
Endothelial function testing

Martin A. Ritter
Dept. of Neurology
University of Münster, Germany

Why testing?

- Atherosclerosis begins early (adolescence)
- Endothelium is
 - Key regulator of vascular homeostasis
 - Barrier function AND
 - signal transducer
- Endothelium function (EF) very sensitive to stressors
- Alteration in EF precedes morphological atherosclerotic changes

Tests in atherosclerosis

EF testing

Carotid IMT

Duplexsono

Augmentation index and Pulse wave velocity

MRI (angiography) CT (angiography)

Stary HC et al. Circulation. 1995; 92: 1355-74, and Fuster V et al. Vasc Med. 1998; 3: 231-9.

Available tests of Endothelium

Technique (Outcome Measure)	Noninvasive	Repeatable	Reproducible*	Reflects Biology	Reversible	Predicts Outcome [†]
Cardiac catheterization (change in diameter, change in coronary blood flow)	25	822	+/-	+	+	+
Venous occlusion plethysmography (change in forearm blood flow)	-	+/-	+/-	+	+	+
Ultrasound FMD (change in brachial artery diameter)	+	+	+/-	+	+	+‡
PWA (change in augmentation index)	+	+	+/-	+	314	25
PCA (change in reflective index)	+	+	+/-	+	177	255
PAT (change in pulse amplitude)	+	+	+/-	+	5-1	35

+ supportive evidence; -, insufficient evidence;

Deanfield 2007

FMD, flow-mediated dilatation; PWA, pulse wave analysis; PCA, pulse contour analysis; and PAT, pulse amplitude tonometry.

^{*} Reproducibility of PWA, PCA, and PAT less extensively investigated than FMD. No studies link PWA, PCA, and PAT to outcome

Other available tests

- Invasive techniques
 - Intrabrachial infusion of vasoactive agents
- Non-invasive techniques
 - Cold pressor stress (CPT)
 - Isometric hand grip exercise
 - Assessment of endothelium independent vasodilation

Intracoronary infusions

- drug infusions via cardiac catheter for 2-3 min
- coronary blood flow = velocity x cross-sectional area
 - Acetylcholine (Ach) at increasing rates (e.g. 1-10 μg/min)
 - Intact endothelium → dose dependent dilation
 - endothelial dysfunction → decreased vasodilatory response or even vasoconstriction
- gold standard but
 - invasive
 - no screening
 - difficult to reproduce

Ach – infusion and long term survival

Intracoronary acetylcholine infusion in 308 patients

Halcox 2002

Intrabrachial infusions

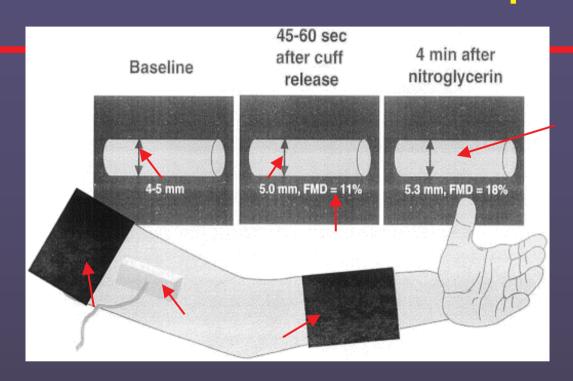
- Arterial catheter into the brachial (femoral) artery
- Forearm blood flow measured by plethysmography
 - ACh, bradykinin, phenylephrine, L-arginine etc.
 - nitroprusside infusion: endothelium independent dilatation?
- Limitations as with intracoronary infusions

Non-invasive techniques - Cold pressor stress test (CPT)

- Endothelium dependent vasodilation by release of catecholamines
- One hand in ice water for 2 min
- Determination of
 - coronary blood flow (invasive)
 - or diameter of the brachial artery by US

Non-invasive techniques – Carotid reactivity to isometric exercise

- Static isometric hand-grip exercise (IHG)
- sustain a hand grip at 33% of peak effort for 2 min
- changes in the carotid (brachial) artery diameter by US
- baseline and every 30 s interval during IHG for 10 min.


Non-invasive techniques - Flow mediated (vaso)- dilation (FMD)

- Dilation of arteries induced by increased flow (mostly: A. brachialis)
- Background:
 - Ischemia postischemic hyperemia increase of flow - increased flow velocity – increased shear stress
 - Shear stress NO-production ↑ dilation
- FMD of brachial artery
 - baseline Ø ~3-4 mm
 - Postischemic increase by ~10%

Endothelium-independent vasodilation with nitroglycerin (NTG)

- After FMD 10 min of waiting time
- NTG (0.4mg sublingual) (NO-donor)
- Max. vasodilation 3 to 4 min. after NTG
- Continuous imaging
- In most studies → little effect of diseases on this response

FMD technique Coretti 2001

Endothelium independent

0.4 mg NTG Measure after 4 min.


Even in patients at risk normal!

| Ischemia (RR-cuff 30 mmHg > syst. RR) | 5 cardiac cycles, enddiastolic (M-Mode, ECG trigger) | Placement of cuff variable | Streported as max. %

Determination of baseline diameter entreme baseline Sonography of brachial artery for later to the baseline

Max. dilation at 50-60s after culticrete appropriate charactery velocity (angel correction)

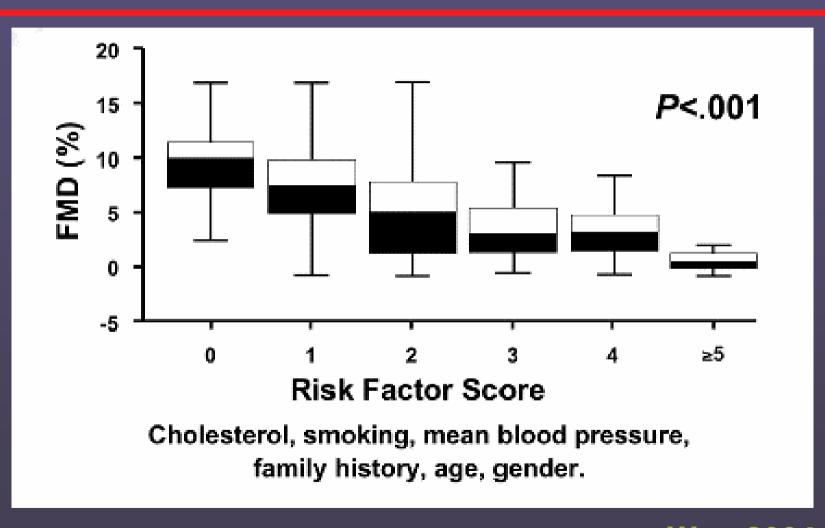
FMD: Example

Baseline

60 s after cuff rlease

 $FMD = (0.35-0.31) / 0.35 \times 100 = 11\%$

FMD of the brachial artery


FMD of the brachial artery

FMD - plausability

- Low nitrate levels correlate with reduced FMD (Kleinbongard 2006)
- Allows risk estimation for future coronary events (Schachinger 2000)
- Correlates with risk factors (Smoking, RR, Cholesterol, Age) (Woo 2004, Faulx 2003)

FMD - plausability

FMD - plausability

- Correlates with manifest vascular disease
 - CHD (Playford 1998, Witte 2005)
 - ICA-Stenosis (Hsu 2005)
 - PAD (Hu 2000)
- Interventions increase FMD
 - Laughing, Chocolate, Wine, medication, life-style modification (Faulx 2003)

The good news for X-mas: Chocolate protects !?!

Diskussion

Infolines

Übersicht

Probiotik

Service

Asthma & COPD

Osteoporose

Schilddrüse

Stellenmarkt

Kongresskalender

Adressen / Links

Newsletter

Arzt privat

gesundheitsfördernden Effekt von dunkler Schokolade zu untersuchen, weil diese reich an Flavonoiden ist. Denn epidemiologische Studien hatten gezeigt, dass sich der Konsum von Flavonoiden womöglich positiv auf das kardiovaskuläre System auswirkt.

Die Arbeitsgruppe schloss 17 gesunde Probanden im durchschnittlichen Alter von 28,9 Jahren ein, die weder Fett- oder Zuckerstoffwechselstörungen noch eine familiäre Vorbelastung für frühzeitige kardiovaskuläre Erkrankungen aufwiesen. Im Cross-over-Design erhielten sie an zwei Tagen jeweils nachmittags nach einer wenigstens achtstündigen Hungerperiode in Kombination mit 250 ml Wasser entweder 100 g einer käuflich erhältlichen dunklen Schokolade (74% Kakao) oder eine "Scheinmahlzeit" (z.B. Kaugummi).

30, 60, 90, 120, 150 und 180 Minuten später ermittelten die Autoren folgende Gefäßwandparameter, um den Einfluss auf die Endothelfunktion, die Wellenreflektion und die Aortensteifigkeit abschätzen zu können; strömungsvermittelte Erweiterung (Flow Mediated Dilation, FMD) der Arteria brachialis, Augmentation-Index der Aorta (Alx) und Carotis/Femoralis-Pulswellengeschwindigkeit (PWV). Zudem erfassten sie die Plasmaspiegel von Malondialdehyd (MDA) und die Gesamt-Antioxidant-Kapazität (TAC) als ein Maß für den oxidativen Status:

Durch Konsum der Schokolade nahm der Durchmesser der Arteria brachialis in Ruhe und bei reaktiver Hyperämie signifikant zu (max. Anstieg: 0,15 mm und 0,18 mm, je p<0,001). Die FDM stieg signifikant nach 60 Minuten (absoluter Anstieg: 1,43%, p<0.05), der Alx sank signifikant (max. absoluter Abfall: 7.8%, p<0.001). Die PWV. die MDA-Spiegel und die TAC änderten sich hingegen nicht signifikant.

www.medizin-online.de

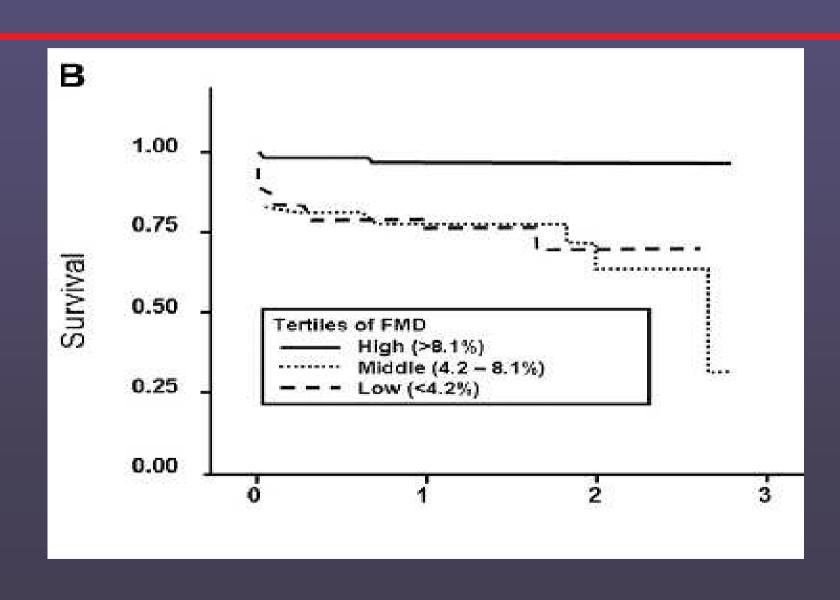
Laughter helps blood vessels function better!

Lachen ist gesund:

achen verbessert die Endothelfunktion und beugt einer Atherosklerose vor

Quelle:

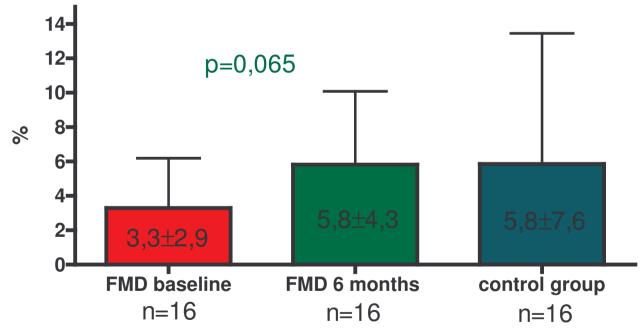
University of Maryland Medical Center
 Laughter helps blood vessels function better.


Weiterführende Informationen:

Atherosklerose

Die alte Volksmundweißheit - Lachen ist die beste Medizin - konnte von US-Kardiologen nur bestätigt werden. Ergebnisse einer Studie zeigen, dass herzhaftes Lachen die Endothelfunktion verbessert und damit einer Atherosklerose vorbeugt.

Bereits in einer früheren Studie konnte Michael Miller von der Universität von Maryland in Baltimore zeigen, dass humorvolle Menschen seltener an einem Herzinfarkt erkranken als strebsame Karrieremenschen. In der aktuellen Studie wurden diese Ergebniss<u>e durch eine Prüfung der Endothelfunktion, bezeichnet als "flow</u> mediated dilation" (FMD), nochmal bestätigt.


FMD and cardiovascular outcome

It's reversible!

Flow-Mediated Dilatation Changes in 6 Months

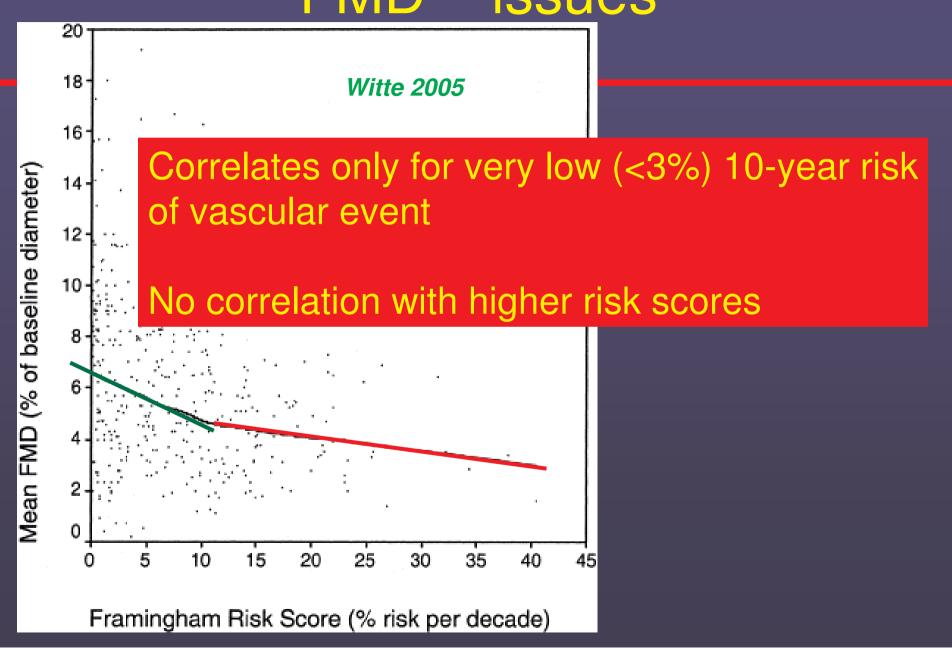
Flow mediated dilatation changes after 6 mo antihypertensive therapy

Csiba

FMD – IMT

- FMD correlates with IMT (p < 0.0001)
 - Adjusted for risk factors
 - 2100 healthy people 24-39 years

Juonala 2004


- FMD correlates with blood pressure (p=0.01)
 - But not with IMT (!)
 - 1580 healthy men 40-60 years

Yan 2005

FMD - issues

- Technically challenging
 - 200 investigations recommended (Corretti 2003)
- Methodological inconsistencies of studies (Bots 2005)
 - population (children elderly, healthy ill)
 - timing (morning, noon or evening)
 - Where to measure (upper arm forearm)
 - Duration of ischemia (3min., 4 min., 5 min.)
 - Where to place the cuff (upper arm forearm)
 - When to measure after cuff release (40s, 60s, 90s)

FMD- issues

- Studies show inconsistent prognostic value
- Intervention studies positive but very restricted
 - Technically challenging
 - Methods vary
- NO study demonstrates
 - FMD improvement = reduction of endpoints

FMD needs further evaluation

Conclusions

- Endothelial dysfunction is systemic and prognostically relevant
- FMD testing is the best evaluated non-invasive test of endothelium
- Not yet suitable for screening / individual decision-making
- Associated with disease burden and outcome
- "Probable valid biomarker"
- Improvement in endothelial function = improved outcome?

